EGFR Mutation Analysis

Background

Cancers of the lung are aggressive diseases, accounting for approximately 30% of all cancer deaths in the U.S. in 2009, with the overall survival rate of patients with metastatic disease less than 15%. Different histological subtypes exist, including small-cell lung cancer (SCLC) that accounts for approximately 20% of lung cancer cases, and non-small-cell lung cancer (NSCLC) that represent the majority of lung cancer cases. NSCLC includes adenocarcinoma, squamous cell carcinoma and large-cell carcinoma. NSCLC tumors are also categorized according to molecular criteria.

Lung cancers harboring mutations in the epidermal growth factor receptor (EGFR) have demonstrated some success in responding to EGFR tyrosine kinase inhibitors. EGFR-mutant NSCLC is defined as a distinct, clinically relevant subset of lung cancer. EGFR-mutant tumors are histologically similar to adenocarcinomas, and are often associated with better prognosis than EGFR wild-type tumors, due primarily to their increased sensitivity to tyrosine kinase inhibitors (TKIs) such as erlotinib (Tarceva from Genentech and OSI Pharmaceuticals) or gefitinib (Iressa from AstraZeneca). These two drugs have demonstrated an increase in progression-free and overall survival in patients who receive EGFR-TKI therapy as a first-line therapy for the treatment of NSCLC. However, not all mutations in the EGFR gene confer sensitivity to TKIs, and primary resistance is still observed. Therefore, the mutation status of EGFR can be a useful marker by which patients are selected for EGFR-targeted therapy.

EGFR is a transmembrane receptor belonging to the ERBB family of receptor tyrosine kinases, which also includes HER2, HER3 and HER4. After ligand binding, the EGFR receptor forms a dimer that activates receptor autophosphorylation through tyrosine kinase activity, which triggers a series of intracellular pathways that may result in cancer-cell proliferation, blocking apoptosis, activating invasion and metastasis, and stimulating tumor-induced neovascularization. Small-molecule EGFR TKIs inhibit EGFR autophosphorylation and downstream signaling by reversibly competing with ATP to bind to the intracellular catalytic domain of EGFR tyrosine kinase.

Clinical Indications

Patients with advanced, non-treated NCSLC should have their tumor tested for EGFR mutations to guide first-line therapy, such as treatment with EGFR TKIs or chemotherapy. Activating mutations in EGFR occur in exons 18 to 21, which encode the kinase domain. These mutations are usually heterozygous, and amplification of the mutant allele can also occur. The most common activating mutations found in EGFR are deletions in exon 19 centered around four amino acids (LREA) at positions 747–750, and a missense mutation (L858R) arising as a result of the leucine to arginine amino acid substitution at position 858 within exon 21. Together, these account for approximately 90% of TKI-sensitive mutations within the EGFR-mutant tumors. The most common activating mutations found in EGFR are deletions in exon 19 centered around four amino acids (LREA) at positions 747–750, and a missense mutation (L858R) arising as a result of the leucine to arginine amino acid substitution at position 858 within exon 21. Together, these account for approximately 90% of TKI-sensitive mutations within the EGFR-mutant tumors. The L861Q mutation in exon 21 and the substitution of glycine at position 719 in exon 18 with alanine (G719A), serine (G719S) or cysteine (G719C) also confer increased sensitivity to EGFR TKIs, although these are much less common. Together, the activating mutations are associated with response rates of approximately 70% when treated with erlotinib or gefitinib.

The S768I mutation in exon 20 is a rare mutation, which has also been reported to confer sensitivity to TKIs, although at a lower level than the L858R mutation or exon 19 deletions. Analysis of the crystal structures of L858R and G719S EGFR mutant proteins demonstrated that the kinase is activated through disruption of autoinhibitory interactions, resulting in receptors with 50-fold more activity compared to wild-type EGFR receptors. Recent studies have shown that patients with tumors harboring exon 19 deletions are associated with longer time to progression (TTP) and overall survival (OS) when compared with L858R point mutations, presumably due to greater sensitivity to TKI treatments.

Mutations in exons 18 to 21 can also be associated with decreased sensitivity or primary resistance to TKIs. Small insertions or duplications in exon 20 (including D770_N771insG) have been shown to be less sensitive to TKIs than exon 19 deletion and L858R mutants. In fact, most patients with these mutations show progressive disease while undergoing TKI therapy.

Acquired resistance can also arise, and despite an initial response to EGFR TKI therapy, patients with EGFR mutations rarely achieve a complete radiographic or pathologic response.
Prolonged TKI treatment provides a selective pressure for the development of tumor cells with acquired resistance to gefitinib or erlotinib. The T790M mutation that arises as a result of the substitution of threonine to methionine at position 790 in exon 20 has been found in 50% of patients with EGFR-mutant tumors who develop acquired resistance to TKIs. This phenomenon is also seen in chronic myelogenous leukemia (CML) cells harboring ABL translocations and gastrointestinal stromal tumor (GIST) cells harboring activating KIT mutations, whereby the threonine gatekeeper residues are substituted with bulkier isoleucine residues that alter drug binding in both ABL (T315I) and KIT (T670I). The T790M mutation is rare, occurring in <5% of untreated EGFR-mutant tumors, but is detected as a second site mutation in half of patients who develop acquired resistance to EGFR TKI therapy. Evidence exists to show that acquired resistance can be lost after a period without TKI therapy, however the mechanisms involved in this are not yet fully understood, and a recommendation regarding discontinuation of EGFR TKI therapy after developing acquired resistance has not yet been made. Collectively, these results deepen our understanding of resistance to EGFR inhibitors and underscore the importance of repeatedly assessing cancers throughout the course of the disease.

Numerous studies and trials have emphasized the importance of using genomic assessments of EGFR rather than using clinical characteristics, as the former is more accurate in selecting a group of patients with increased chance of sensitivity to EGFR-TKI therapy.

Methodology

The EGFR Mutation Analysis assay is an allele specific polymerase chain reaction (ASPCR) assay performed on the Rotor-Gene® Q 5plex HRM® instrument (Qiagen) using two

<table>
<thead>
<tr>
<th>Exon</th>
<th>Mutation</th>
<th>EGFR TKI Therapy Response Associated with Mutation</th>
<th>References</th>
<th>COSMIC ID</th>
<th>Base Change (CDS Mutation)</th>
<th>Amino Acid Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>G719A</td>
<td>Sensitive to EGFR TKI treatment</td>
<td>1, 7, 8</td>
<td>6239</td>
<td>c.2156G>C p.G719A</td>
<td>p.G719A</td>
</tr>
<tr>
<td>19</td>
<td>Deletions in exon 19</td>
<td>Sensitive to EGFR TKI treatment</td>
<td>1, 7, 9</td>
<td>6223</td>
<td>c.2235 2249del15 p.E746_A750del</td>
<td>p.E746_A750del</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13551</td>
<td>c.2235 2252>AA (complex) p.E746_T751 del</td>
<td>p.E746_T751del</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12728</td>
<td>c.2236 2253del18 p.E746_S752 del</td>
<td>p.E746_S752 del</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12678</td>
<td>c.2237 2251del15 p.E746_S752 del</td>
<td>p.E746_S752 del</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12367</td>
<td>c.2237 2254del18 p.E746_S752 del</td>
<td>p.E746_S752 del</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12384</td>
<td>c.2237 2255>T (complex) p.E746_S752 del</td>
<td>p.E746_S752 del</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6225</td>
<td>c.2236 2250del15 p.E746_T751 del</td>
<td>p.E746_T751 del</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6220</td>
<td>c.2238 2253del18 p.E746_S752 del</td>
<td>p.E746_S752 del</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12422</td>
<td>c.2238 2248>G (complex) p.E746_S752 del</td>
<td>p.E746_S752 del</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12419</td>
<td>c.2238 2252>GCA (complex) p.E746_S752 del</td>
<td>p.E746_S752 del</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6218</td>
<td>c.2239 2247del9 p.E746_Q750 del</td>
<td>p.E746_Q750 del</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6254</td>
<td>c.2239 2253del15 p.E746_Q750 del</td>
<td>p.E746_Q750 del</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6255</td>
<td>c.2239 2256del18 p.E746_Q750 del</td>
<td>p.E746_Q750 del</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12382</td>
<td>c.2239 2248TTAAGAGAAG>G (complex) p.E746_Q750 del</td>
<td>p.E746_Q750 del</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12387</td>
<td>c.2239 2258>CA (complex) p.E746_Q750 del</td>
<td>p.E746_Q750 del</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6210</td>
<td>c.2240 2251del12 p.E746_Q750 del</td>
<td>p.E746_Q750 del</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12370</td>
<td>c.2240 2257del18 p.E746_Q750 del</td>
<td>p.E746_Q750 del</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12369</td>
<td>c.2240 2254del15 p.E746_Q750 del</td>
<td>p.E746_Q750 del</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12383</td>
<td>c.2239 2251>G (complex) p.E746_Q750 del</td>
<td>p.E746_Q750 del</td>
</tr>
<tr>
<td>20</td>
<td>Insertions in exon 20</td>
<td>Lack of responsiveness to EGFR TKIs</td>
<td>1</td>
<td>12376</td>
<td>c.2307 2308ins9 p.V769_D770insASV</td>
<td>p.V769_D770insASV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12377</td>
<td>c.2319 2320insCAC p.I773_V774insH</td>
<td>p.I773_V774insH</td>
</tr>
<tr>
<td>20</td>
<td>T790M</td>
<td>Resistance to EGFR TKIs</td>
<td>1, 3, 4, 5, 8</td>
<td>6240</td>
<td>c.2369C>T p.T790M</td>
<td>p.T790M</td>
</tr>
<tr>
<td>20</td>
<td>S768I</td>
<td>Low level sensitivity to EGFR TKI treatment</td>
<td>7</td>
<td>6241</td>
<td>c.2303G>T p.S768I</td>
<td>p.S768I</td>
</tr>
<tr>
<td>21</td>
<td>L858R</td>
<td>Sensitive to EGFR TKI treatment</td>
<td>1, 7</td>
<td>6224</td>
<td>c.2573T>G p.L858R</td>
<td>p.L858R</td>
</tr>
<tr>
<td>21</td>
<td>L861Q</td>
<td>Sensitive to EGFR TKI treatment</td>
<td>7, 8</td>
<td>6213</td>
<td>c.2582T>A p.L861Q</td>
<td>p.L861Q</td>
</tr>
</tbody>
</table>
technologies – Scorpions and ARMS® – to qualitatively detect the following 29 somatic mutations (full details in Table 1) against a background of wild-type genomic DNA:

- 19 deletions in exon 19 (detects the presence of any of the 19 deletions, but does not distinguish between them).
- T790M.
- L858R.
- L861Q.
- G719X (detects the presence of any of G719S, G719A or G719C, but does not distinguish between them).
- S768I.
- 3 insertions in exon 20 (detects the presence of any of 3 insertions but does not distinguish between them).

The ARMS® (Amplification Refractory Mutation System) technology achieves allele- or mutation-specific amplification. Taq DNA polymerase is effective at distinguishing between a match and a mismatch at the 3’ end of a PCR primer. Specific mutated sequences are selectively amplified, even in samples where the majority of the sequences do not carry the mutation. When the primer is fully matched, the amplification proceeds with full efficiency. When the 3’ base is mismatched, only low level background amplification occurs.

Scorpions, or bi-functional molecules containing a PCR primer covalently linked to a probe, are used to detect amplification. The fluorophore in this probe interacts with a quencher, also incorporated into the probe, which reduces fluorescence. During PCR, when the probe binds to the amplicon, the fluorophore and quencher become separated. This leads to an increase in fluorescence from the reaction tube. A total of seven mutation reactions, each labeled with FAM are performed. Each mutation reaction contains Scorpion probes plus primers for discrimination between the wild-type DNA and mutant DNA detected by real time PCR.

A control reaction (a region of exon 2 for which the primers and probe have been designed to avoid any known EGFR polymorphisms), also labeled in FAM, is performed to assess the amount of amplifiable DNA in the sample and to calculate the difference in cycle threshold (ΔCₜ) between the mutation reaction and the control reaction from the same sample.

Interpretation of Results

A sample is considered mutation positive if the ΔCₜ is less than the cut-off ΔCₜ for that mutation reaction. Above this value, the sample may either contain less than the percentage of mutant DNA detectable by the assay, or the sample does not contain that specific mutation. The assay is capable of detecting mutations in samples containing at least 10% mutant allele. This is representative of 20% tumor within a heterogeneous sample containing tumor and non-tumor cells.

When using ARMS primers, some inefficient priming may occur, giving a very late background Cₜ from DNA not containing a mutation. All Cₜ values calculated from background amplification will be greater than the cut-off ΔCₜ values and the samples will be classed as mutation negative. This is particularly noticeable in the T790M mutation reaction, due to the fact that the T790M mutation is found in a very GC rich region. With primer design, GC content is critical for PCR efficiency. The sensitivity of the T790M assay is affected due to an increased limit of blank (LOB), which only allows an increased % of mutant to be discriminitely detected. In the assay, this reflects itself in a lower ΔCₜ cut-off, and the potential for ‘breakthrough’ (non-specific) amplification late in the reaction.

Specimen Preparation

Up to 10 unstained slides cut at a thickness of 7µm on unbaked microscope slides plus the pre- and post-H&E stained sections with the best tumor area circled by a pathologist are needed to perform the EGFR mutation analysis assay. The number of slides required will vary, depending on the size of the tumor area.

Alternatively, cellular material obtained from the patient's lungs by fine needle aspiration and preserved in CytoLyt solution can be used. Such material should be stored at 4°C for up to 2 weeks prior to analysis. The specimen submitted for analysis should contain >20% tumor cells, as determined by microscopic examination of ThinPrep slides, H&E stained slide or other slides.

Limitations of the Assay

A validation panel consisting of 100 specimens was used to assess the clinical performance of the EGFR Mutation Analysis assay. This consisted of samples for which EGFR mutation status had been determined by analysis at external CLIA-certified laboratories.

Sensitivity of the assay greatly depends on the extent of fragmentation and quality of the isolated DNA.

References

Test Name: EGFR Mutational Analysis

Ordering Mnemonics: EGFRCP (cell pellet); EGFRTI (tissue)

Methodology: Qiagen EGFR RGQ PCR Assay

Specimen Requirements:
Acceptable specimens are cellular material obtained from the patient’s lungs by fine needle aspiration, formalin fixed paraffin-embedded (FFPE) tissue block or cytopathology cell blocks. Submit specimen in one of the following:

Aspirate, Fine Needle
- Container: CytoLyt solution or PreservCyt solution.
- Transport specimen at ambient temperature.

Formalin-Fixed, Paraffin-Embedded Block - Formalin Fixation Only:
- Tissue should be well-fixed in formalin.
- The specimen submitted for analysis should contain >20% tumor cells. Please include Thin Prep slide and Cytology report.
- Transport specimen at ambient temperature.

Unstained Slides:
- 8-10 unstained slides from formalin fixed block cut in 7 micron sections.
- The specimen submitted for analysis should contain >20% tumor cells. Please include H&E slide and a copy of pathology report.
- Transport specimen at ambient temperature.

CPT Codes: 81235; 88381

Billing Codes: 88871 (EGFRCP); 88877 (EGFRTI)

Technical Information Contacts:
Lisa Buhrow
216.444.8283
buhrowl@ccf.org

Kelly Lyon, MT
216.444.8283
lyonk@ccf.org

Scientific Information Contact:
Roger Klein, MD, JD
216.445.0776
kleinr3@ccf.org
