Fluorescence in situ Hybridization (FISH) for Recurrent Bladder Cancer: Detection of Genetic Alterations in Bladder Cancer Cells

Background Information
Bladder cancer is the fifth most common type of cancer in the United States. Ninety percent of bladder cancer cases are transitional cell carcinomas (TCC). At presentation, about 75% of tumors are superficial, of which 50 to 80% will have one or multiple recurrences, and 15 to 25% will progress to muscle-invasive tumors.

Follow-up cystoscopy and urine cytology have been used to detect recurrence and tumor progression in patients with superficial TCC. However, low-grade tumors tend to have false negative cytology results.

Several genetic alterations have been identified to occur at high frequency in bladder cancer. These include the loss of a portion of chromosome 9 (presumably carrying a tumor suppressor gene), as well as numerical change in chromosomes 3, 7 and 17. Using a multicolor set of fluorescent DNA probes (UroVysion, Abbott Molecular, Vysis, Des Plaines, IL), several studies have demonstrated that detection of chromosomal abnormalities by fluorescence in situ hybridization (FISH) has higher sensitivity in detection of TCC recurrence than does cytology, while maintaining high specificity. This technique has been validated for use as an adjunct to urinary cytology utilizing thin layer liquid-based preparations.

Clinical Indications
Cleveland Clinic Laboratories now offers analysis of chromosomal abnormalities in urine cytology specimens using multicolor, multitarget UroVysion FISH probes (chromosomes 3, 7, 17 and 9p21 locus). FISH can be utilized as an ancillary test increasing the sensitivity of urinary cytology in the detection of TCC.

Methodology
FISH can be performed on previously prepared thin layer, liquid-based cytology slides (ThinPrep, Cytex, Boxborough, MA) or, alternatively, on fresh voided/instrumented urine specimens shipped in 70% ethanol.

Interpretation
Optimal samples have a minimum of 25 transitional cells for analysis.

Positive test:
Four or more cells showing gain of 2 or more chromosomes (3, 7 and 17) in the same cell, OR loss of 9p21 locus in 12 or more cells, OR isolated gain of one of the chromosomes 3, 7, or 17 in >10% of the analyzed cells. The loss of 9p21 must be homozygous to be classified as positive.
Negative test:
Relevant chromosomal changes are not found after screening of the entire slide. The cellularity is limited for cases having fewer than 25 urothelial cells to count.

Limitations of the Assay
False negative results might occur if less than 25 transitional cells are available for analysis.

References

Test Overview

<table>
<thead>
<tr>
<th>Test Name</th>
<th>FISH for bladder cancer without urinary cytology</th>
<th>FISH for bladder cancer with urinary cytology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient Preparation</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Reference Range</td>
<td>Absence of relevant chromosomal changes</td>
<td></td>
</tr>
<tr>
<td>Specimen Requirements</td>
<td>40 ml fresh urine with equal amount of 70% ethanol added to sample in clean 100 ml urine container. Send specimen refrigerated. ThinPrep slides are also acceptable. The slide will be retained at Cleveland Clinic Laboratories per regulatory guidelines.</td>
<td></td>
</tr>
<tr>
<td>Billing Code</td>
<td>87997</td>
<td>82151</td>
</tr>
<tr>
<td>CPT Code</td>
<td>88120(x1)</td>
<td>88112(x1); 88120(x1)</td>
</tr>
</tbody>
</table>

Technical Information Contacts:
Christine Dziekan, MT(ASCP) 216.444.8444 dziekac@ccf.org
Wendy Nedlik, MT(ASCP) 216.444.8410 nedlikw@ccf.org

Scientific Information Contacts:
Charles Biscotti, MD 216.444.0046 biscotc@ccf.org
Jennifer Brainard, MD 216.445.8474 brainaj@ccf.org