METHYLATION ASSAY

MGMT Pyrosequencing Methylation Assay for Glioblastoma

Background

Glioblastoma is the most common and most aggressive malignant primary brain tumor. While occurring in only two to three cases per 100,000 people in North America, glioblastoma represents 52% of all functional tissue brain tumor cases and 20% of all intracranial tumors. Prognosis for those diagnosed with glioblastoma is poor, with a median survival time of about 14 months.¹

Patients with glioblastoma can be treated with alkylating agents such as Temador® (temozolomide). Epigenetic silencing of the *MGMT* (O⁶-methylguanine-DNA methyltransferase) DNA-repair gene by promoter methylation compromises DNA repair and has been associated with longer survival in patients with glioblastoma who receive temozolomide.²,³

Temozolomide kills tumor cells by producing cross-links between DNA strands and inhibiting DNA replication. The most common alkylation site is the O⁶ position of guanine. O⁶-methylguanine DNA methyltransferase (*MGMT*) is a DNA repair protein that reverses such DNA alkylation and confers chemoresistance by repairing DNA damage. Temozolomide seems to work by sensitizing the tumor cells to radiation.⁴

Recent clinical studies confirm that the presence of *MGMT* promoter methylation in tumor samples corresponds to an increased likelihood that tumor cells would be responsive to temozolomide.³,⁴,⁵,⁶ If the promoter was methylated, temozolomide was more effective. It is estimated that approximately 40 to 50% of glioblastoma tumors exhibit *MGMT* gene methylation, which correlates significantly with reduced DNA damage repair induced by alkylating agents and significantly enhanced chemosensitivity.⁴

According to recent clinical trials, glioblastoma patients with *MGMT* methylation respond to temozolomide two to three times better than those lacking *MGMT* methylation. Prolonged overall and progression-free survival at 24 months was 80% for those with *MGMT* methylation vs. 20% for those lacking *MGMT* methylation.

Clinical Indications

For patients diagnosed with glioblastoma to determine if a methylated *MGMT* promoter is present, which is a favorable prognostic indicator for temozolomide treatment. Individuals without a methylated *MGMT* promoter do not have such a benefit. *MGMT* “silence” is the most significant guide for the treatment of glioblastoma. This assay is to validate the methylation status of the *MGMT* gene.

Methodology

Pyrosequencing technology, which is based on the principle of sequencing by synthesis, provides quantitative data in sequence context within minutes. Real-time sequence information is highly suitable for quantification of CpG methylation. We have validated pyrosequencing-based assay in detection of *MGMT* methylation in paraffin-embedded biopsy tissue specimens. With 10% average methylation as a cutoff, *MGMT* promoter methylation was detected in glioblastoma, but not detected in non-neoplastic brain tissue. The analytical sensitivity of the assay is 5% of target cells harboring *MGMT* methylation.

Diagnostic *MGMT* testing requires sufficient and optimally preserved tumor tissue. The biopsy should be at least 0.5 cm in size and necrosis should be less than 15%. Both frozen and paraffin-embedded tissue are suitable for the pyrosequencing-based *MGMT* methylation assay.
Interpretation

Positive for *MGMT* methylation: equal or greater than 10% of methylation in any CpG island or in average of all CpG islands analyzed.

Negative for *MGMT* methylation: less than 10% of any CpG island or in average of all CpG islands analyzed.

References

Test Overview

<table>
<thead>
<tr>
<th>Test Name</th>
<th>MGMT Methylation Assay for Glioblastoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordering Mnemonic</td>
<td>MGMT Methylation</td>
</tr>
<tr>
<td>Methodology</td>
<td>MGMT Methylation with Pyrosequencing</td>
</tr>
<tr>
<td>Specimen Requirements</td>
<td>The biopsy should be at least 0.5 cm in size and necrosis should be less than 15%. The best results with methylation-specific PCR are obtained with cryopreserved tumor specimens.</td>
</tr>
<tr>
<td>Reference Range</td>
<td>Positive for MGMT methylation: ≥ of 10% of any CpG island or average of all 5 CpG islands. Negative for MGMT methylation: >10% of methylation or average of all CpG islands analyzed.</td>
</tr>
<tr>
<td>Billing Code</td>
<td>84235</td>
</tr>
<tr>
<td>CPT Codes</td>
<td>81287 (x1); G0452 (x1)</td>
</tr>
</tbody>
</table>

Technical Information Contacts:

Christine Dziekan, MT(ASCP)
216.444.8444
dziekac@ccf.org

Wendy Nedlik, MT(ASCP)
216.444.8410
nedlikw@ccf.org

Scientific Information Contact:

Bin Yang, MD, PhD
216.445.0306
yangb@ccf.org