Prostate-Specific Antigen (PSA) Reference Range Update

Background
Prostate-specific antigen (PSA) is a serine protease (~30kDa) secreted exclusively by prostate epithelial cells, first described in 1979. PSA was detected in blood and the concentration of PSA was increased in cases of prostate cancer or other prostatic diseases, such as benign prostatic hyperplasia.1 Serum PSA measurement was shown to enhance early detection of prostate cancer, leading to the recognition of its potential as a screening test.2 Serum PSA alone, or combined with a digital rectal exam (DRE), have been used in clinical trials for early detection of prostate cancer.3-4 A recent multicenter study using serum PSA tests with various cutoffs between 2.6 and 4.0 ng/ml showed a 20% reduction in prostate cancer specific mortality.4

Limitations of PSA
PSA as a marker is only prostatic tissue-specific, rather than cancer-specific. Increased PSA in serum was not only detected in patients with prostate cancer, but also in benign prostatic disease.1 This phenomenon resulted in a significant false positive rate in PSA-based detection of prostate cancer based on biopsy results from those patients. The other disadvantage for PSA is that PSA-based detection of prostate cancer often resulted in over-diagnosis of low-grade cancer that may have never become clinically significant. Several approaches to improve the distinction between cancer and benign conditions have been proposed, including use of age-adjusted PSA reference ranges, PSA density, PSA velocity and free-to-total PSA ratio.

Clinical Significance
The traditional cutoff for serum PSA is 4.0 ng/ml. PSA values >4.0 ng/mL were considered abnormal, and these patients were further evaluated with invasive diagnostic approaches, such as prostate biopsy or transrectal ultrasonography of the prostate.1 However, multiple studies suggest that the risk of prostate cancer in men with PSA levels <4.0 ng/mL is significant (see Table 1). For example, the prostate cancer prevention trial (PCPT) included 2.950 participants who had PSA levels < 4.0 ng/mL and who underwent an end-of-study biopsy. Results showed that more than 15% of these men had prostate cancer.5 The detection rate of prostate cancer is about 47% in men with serum PSA in the range of 4-10 ng/mL.5 However, the cancer rate is very similar for men with a PSA range of 2.0-3.0 ng/mL (23%) and that with PSA of 3.0-4.0 ng/mL (26%).

Table 1. Likelihood of cancer based on PSA Level

<table>
<thead>
<tr>
<th>PSA (ng/mL)</th>
<th>Risk for prostate cancer on biopsy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤1.0</td>
<td>8.8</td>
</tr>
<tr>
<td>1.1 - 2.0</td>
<td>17.0</td>
</tr>
<tr>
<td>2.1 - 3.0</td>
<td>23.9</td>
</tr>
<tr>
<td>3.1 - 4.0</td>
<td>26.9</td>
</tr>
<tr>
<td>4.1 - 10.0</td>
<td>47.0</td>
</tr>
<tr>
<td>>10.0</td>
<td>58.2</td>
</tr>
</tbody>
</table>

Data from the PCPT demonstrated that there is no PSA level below which the risk of having prostate cancer is zero and suggest that there is no “normal” reference range for PSA. The detection rate of prostate cancer is significantly correlated to the serum PSA levels. Lowering the PSA cutoff of 4.0 ng/ml to 2.6 ng/ml would increase detection of prostate cancer, while also slightly increasing false positive results.6-8

Test Update Information
The new PSA reference range is 0-2.59 ng/ml; the upper limit is cutoff value for further evaluation. The following comment will be included with each PSA result:

“For an individual patient, the significance of a PSA level should be interpreted in a broad clinical context, including age, race, family history, digital rectal examination, prostate size, results of prior testing (prostate biopsy, free PSA, PCA3) and use of 5-alpha-reductase inhibitors. Considering the high incidence of asymptomatic cancer in the general population that may not pose an ultimate risk to the patient, the decision to recommend urological evaluation or prostate biopsy should be individualized after considering all of these factors.”
A useful tool that incorporates many of these variables for calculating the risk of cancer is available at: http://www.compass.fhcrc.org/edrnnci/bin/calculator/main.asp?t=prostate&sub=disclaimer&v=prostate&m=x=Prostate%20Cancer. This information will assist physicians in deciding whether a prostate biopsy is appropriate.

References

